PEX11 promotes peroxisome division independently of peroxisome metabolism

نویسندگان

  • Xiaoling Li
  • Stephen J. Gould
چکیده

The PEX11 peroxisomal membrane proteins are the only factors known to promote peroxisome division in multiple species. It has been proposed that PEX11 proteins have a direct role in peroxisomal fatty acid oxidation, and that they only affect peroxisome abundance indirectly. Here we show that PEX11 proteins are unique in their ability to promote peroxisome division, and that PEX11 overexpression promotes peroxisome division in the absence of peroxisomal metabolic activity. We also observed that mouse cells lacking PEX11beta display reduced peroxisome abundance, even in the absence of peroxisomal metabolic substrates, and that PEX11beta(-/-) mice are partially deficient in two distinct peroxisomal metabolic pathways, ether lipid synthesis and very long chain fatty acid oxidation. Based on these and other observations, we propose that PEX11 proteins act directly in peroxisome division, and that their loss has indirect effects on peroxisome metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The peroxin Pex34p functions with the Pex11 family of peroxisomal divisional proteins to regulate the peroxisome population in yeast

Peroxisomes are ubiquitous organelles involved in diverse metabolic processes, most notably the metabolism of lipids and the detoxification of reactive oxygen species. Peroxisomes are highly dynamic and change in size and number in response to both intra- and extracellular cues. In the yeast Saccharomyces cerevisiae, peroxisome growth and division are controlled by both the differential import ...

متن کامل

The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11.

Peroxisome division involves the conserved PEX11 peroxisomal membrane proteins and in yeast has been shown to require Vps1p, a dynamin-like protein. We show here that DLP1, the human homolog of the yeast DNM1 and VPS1 genes, plays an important role in peroxisome division in human cells. Disruption of DLP1 function by either RNA interference or overexpressing dominant negative DLP1 mutants cause...

متن کامل

An ancestral role in peroxisome assembly is retained by the divisional peroxin Pex11 in the yeast Yarrowia lipolytica.

The peroxin Pex11 has a recognized role in peroxisome division. Pex11p remodels and elongates peroxisomal membranes prior to the recruitment of dynamin-related GTPases that act in membrane scission to divide peroxisomes. We performed a comprehensive comparative genomics survey to understand the significance of the evolution of the Pex11 protein family in yeast and other eukaryotes. Pex11p is hi...

متن کامل

Giant peroxisomes in a moss (Physcomitrella patens) peroxisomal biogenesis factor 11 mutant

Peroxisomal biogenesis factor 11 (PEX11) proteins are found in yeasts, mammals and plants, and play a role in peroxisome morphology and regulation of peroxisome division. The moss Physcomitrella patens has six PEX11 isoforms which fall into two subfamilies, similar to those found in monocots and dicots. We carried out targeted gene disruption of the Phypa_PEX11-1 gene and compared the morpholog...

متن کامل

The Arabidopsis chloroplast division protein DYNAMIN-RELATED PROTEIN5B also mediates peroxisome division.

Peroxisomes are highly dynamic organelles involved in various metabolic pathways. The division of peroxisomes is regulated by factors such as the PEROXIN11 (PEX11) proteins that promote peroxisome elongation and the dynamin-related proteins (DRPs) and FISSION1 (FIS1) proteins that function together to mediate organelle fission. In Arabidopsis thaliana, DRP3A/DRP3B and FIS1A (BIGYIN)/FIS1B are t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 156  شماره 

صفحات  -

تاریخ انتشار 2002